\qquad

Cylinder		Cone	Ratio of Volumes Cone : Cylinder
1	Length of Radius: 6 cm Height of Cylinder: 10 cm Volume:	Length of Radius: 6 cm Height of Cone: 10 cm Volume: $376.8 \mathrm{~cm}^{3}$	
2	Length of Radius: 9 in Height of Cylinder: 15 in Volume:	Length of Radius: 9 in Height of Cone: 15 in Volume: 1271.7 in	
3	Length of Radius: 18 ft Height of Cylinder: 7 ft Volume:	Length of Radius: 18 ft Height of Cone: 7 ft Volume: 2373.84 ft	

Looking at the ratios you wrote for the volume of the cone to the volume of the cylinder, what conclusions can you make?

Volume of a Cylinder	Volume of a Cone

Using the formula, find the volume of the cones from above. Use 3.14 for π

l)	2)	$3)$	

(II)

Pause the video and try the problems on your own! Round to the nearest tenth if necessary. Then press play and check your answers with a color pen.

3)

