By the end of this lesson you will be able to

1) \qquad
2) \qquad

Example 1-Determine if the following value is a solution to the inequality.

1) Is ___ a solution to the inequality $5+x$ 12? Explain your steps and thought process.
2) Is \qquad a solution to the inequality $x \quad 12>8$? Explain your steps and thought process.
3) Is \qquad a solution to the inequality $4 x$ 20? Explain your steps and thought process.
4) Is \qquad a solution to the inequality $\frac{x}{5}$

3? Explain your steps and thought process.

How is solving an inequality different than solving an equation?

$$
12+x=9
$$

$$
12+x>9
$$

Subtract 12 from both sides.

$$
x=
$$

The solution for x is \qquad -

$$
x>
$$

The solution for x is \qquad
\qquad -

Example 2 - Solve for the variable x.
$x-14>6$

My Steps...

1) $x+20<6$
2) $2 x \geq 35$
3) $\frac{x}{7} \leq-3$

Your Turn to Practice

Determine whether the value is a solution to the inequality.

1) Is \qquad a solution to the inequality \qquad
2) Is \qquad a solution to the inequality \qquad
3) Is \qquad a solution to the inequality \qquad

Solve for the variable x in each inequality.
4)
5)
6)
7)

