Change in Dimensions Notes

Name_____

Original Rectangle	Rectangle 1	Rectangle 2	Rectangle 3
Length = Width = Area =	Length = 8 cm Width = 3 cm Area =	Length = 4 cm Width = 6 cm Area =	Length = 8 cm Width = 6 cm Area =
	When the length and the width, then the area	When the length and the width	When the length and the width

Original Circle	Circle 1	Circle 2	
Radius = Area =	Radius = 2 cm Area =	Radius = 3 cm Area =	
	When the radiusthen the area	When the radius then the area	

 $lue{lue{}}$

Pause the video and try these on your own!

Then press play and check your answers with a color pen.

- 1. Looking at the original rectangle, what would happen to the area if you tripled the length, but kept the width the same?
- 2. Looking at the original rectangle, what would happen to the area if you tripled the length and the width? _____
- 3. Looking at the original circle, what would happen to the area if you quadrupled the radius?
- 4. Looking at the original circle, what would happen to the area if you multiplied the radius by 7?