\qquad

Mean Absolute Deviation (MAD): a numerical measure of spread that shows how much data values vary from the mean. A low MAD indicates that the data points tend to be very close to the mean so the mean is an accurate description of "typical". A high MAD indicates that the data points are spread out over a large range of values

Steps to Finding MAD	Steps to Finding MAD with the TI-73
1) Find the mean of the data	Enter data into List 1
2) Subtract the mean from each data point	from that list, \forall to L 2 then \exists to highlight L 2
3)	$-31: \mathrm{L}_{1} \mathrm{~T}-3 \forall \forall 3:$ mean $\left(-3 \mathrm{l}: \mathrm{L}_{1} \beta\right.$
Get the absolute value of each of those	\forall to L 3 then \exists to highlight L 3
differences	$1 \forall \mathrm{l}: \mathrm{abs}\left(-32: \mathrm{L}_{2} \beta\right.$
4)	Find the mean of those values from step 3.

1. Find the MAD of each of the data sets.

Hours spent on Homework: 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 7

Hours spent Watching TV: $1,2,3,3,4,4,4,5,6,6,7,7,8,9,9$
What does the MAD tell you about each data set?

2. Find the MAD of each of the data sets.

George's Points per Game: 23, 25, 25, 27, 28, 28, 29, 30, 31
Nate's Points per Game: 18, 24, 25, 26, 28, 30, 32, 34, 38

What does the MAD tell you about each data set?

Pause the video and try this problem on your own! Then press play and check your answers with a color pen.

1. Find the MAD of each of the data sets.

Sally's Earnings in one week: 122, 125, 130, 135, 135, 147, 152, 166

Jane's Earnings in one week: 111, l15, 120, 125, 125, 134, 144, 160

MAD \qquad

MAD \qquad

MAD \qquad

MAD \qquad

MAD \qquad

MAD \qquad
What does the MAD tell you about each data set?

